Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Korean Journal of Dental Materials ; (4): 61-70, 2021.
Article in English | WPRIM | ID: wpr-901906

ABSTRACT

The effect of the cooling rate on changes in hardness, flexural strength, and microstructure of zirconia core ceramics was investigated during simulated porcelain firing without layering porcelain on the zirconia core ceramic. Three cooling rates were tested: 227.5 ℃/min, which is the rate suggested by the manufacturer, Stage 0 (taking the ceramic out of the firing chamber immediately after firing and bench cooling to room temperature), and Stage 3 (cooling to 600 ℃ with the firing chamber closed and then bench cooling to room temperature (33 ℃/min)). In the Stage 0 group and the group cooled at the rate suggested by the manufacturer, the hardness increased compared to the group before firing (p0.05). The grain size of the specimen groups whose hardness increased after firing was reduced by recrystallization, but the Stage 3 group had coarsened grains. In all test groups before and after firing, only the tetragonal phase was observed. In particular, a metastable phase (T’) in which the axial ratio (c/a ratio = c/√ 2a) was closer to 1 coexisted with the tetragonal phase. The flexural strength of the zirconia core did not exhibit a significant difference with respect to the cooling rate (p>0.05).

2.
Korean Journal of Dental Materials ; (4): 61-70, 2021.
Article in English | WPRIM | ID: wpr-894202

ABSTRACT

The effect of the cooling rate on changes in hardness, flexural strength, and microstructure of zirconia core ceramics was investigated during simulated porcelain firing without layering porcelain on the zirconia core ceramic. Three cooling rates were tested: 227.5 ℃/min, which is the rate suggested by the manufacturer, Stage 0 (taking the ceramic out of the firing chamber immediately after firing and bench cooling to room temperature), and Stage 3 (cooling to 600 ℃ with the firing chamber closed and then bench cooling to room temperature (33 ℃/min)). In the Stage 0 group and the group cooled at the rate suggested by the manufacturer, the hardness increased compared to the group before firing (p0.05). The grain size of the specimen groups whose hardness increased after firing was reduced by recrystallization, but the Stage 3 group had coarsened grains. In all test groups before and after firing, only the tetragonal phase was observed. In particular, a metastable phase (T’) in which the axial ratio (c/a ratio = c/√ 2a) was closer to 1 coexisted with the tetragonal phase. The flexural strength of the zirconia core did not exhibit a significant difference with respect to the cooling rate (p>0.05).

3.
Korean Journal of Dental Materials ; (4): 199-208, 2018.
Article in Korean | WPRIM | ID: wpr-759662

ABSTRACT

In this study, change of optical properties and microstructure of an Ag-Pd-In alloy according to Ag content was investigated. For this purpose, specimen alloys were prepared by adding 0–100 wt.% of Ag to the 50Pd-50In (wt.%) alloy. When the content of Ag was more than 40 wt.%, the color difference with pure gold specimen was increased(p < 0.001). L* value increased as the Ag content of the specimen increased, but a* and b* value increased until the addition of 20 wt.% Ag, and then decreased with increasing Ag content(p < 0.001). Ag-free specimen was single phase in the as-cast state, but when the content of Ag was more than 20 wt.%, the phase separation occurred and two phases of matrix and dendrite or granular structure were confirmed. The dendrite or granular structure was composed of the InPd phase, and the matrix was composed of the Ag-rich phase. From these results, it can be concluded that the specimens with Ag content of 20–70 wt.% have the Ag-rich matrix which has a high L* value and low a* and b* value, and have the dendrite structure which has a low L* value and high a* and b* value. As the content of Ag increased, the color changed from light yellow to silver white due to the increase in the ratio of the matrix to the dendrite or granular structure.


Subject(s)
Alloys , Dendrites , Silver
SELECTION OF CITATIONS
SEARCH DETAIL